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Algebraic solitary-wave polaritons in far-infrared transients

K. Hayata and M. Koshiba
Department of Electronic Engineering, Hokkaido University, Sapporo 060, Japan
(Received 1 December 1994)

We show that a single far-infrared pulse interacting with transverse-optic phonons in a dispersive
dielectric offers a unique type of algebraic (rational) solitary wave in the presence of second- and third-

order nonlinearities.

PACS number(s): 03.40.Kf, 42.50.Rh, 41.20.Jb, 42.65.—k

It is now well known that many phenomena in contem-
porary physics can be explained in terms of solitons [1].
In optics, of a variety of model equations that predict the
existence of solitonic solutions, along with the
Korteweg—de Vries (KdV) and the sine-Gordon equa-
tions, the type that can be described by a family of non-
linear Schrodinger equations will be representative. With
respect to the topological structure, the transverse
configuration, and the asymptotic behavior in the tail,
several classification methods of solitonlike fields are pos-
sible. For instance, the second classification consists of
three categories: a bright, dark, and kink (shock-wave)
type. The dark type is classifiable further into a gray,
black, and darker-than-black solution [2]. A
classification is also possible in terms of whether or not
the field profile is describable with a combination of ex-
ponential functions, such as a hyperbolic function. One
may find that the majority of solitary waves that have
been explored so far are attributable to this family. An
exception will be seen in what we call algebraic (or ra-
tional) solitons. As the term indicates, the field distribu-
tion of the algebraic solitons is expressed by a rational
function such as a Lorentzian, and thus they are localized
more weakly than the familiar hyperbolic-type solitons.
To date the Lorentzian-type solitons (quasisolitons) have
been found to exist in various physical contexts [3—-12].
In the context of nonlinear optics, Mills presented a
Lorentzian-shaped solitonlike solution, termed a type-II
gap soliton, which could be sustained in nonlinear period-
ic structures within a frequency range near the lower
bound of the gap [7]. In an analogous context, Grimshaw
and Malomed recently showed that at a certain value of
the wave velocity, gap solitons in a coupled KdV wave
system degenerate into algebraic solitons with a Lorentzi-
an intensity profile [8]. In the study of self-induced tran-
sparency of intensified radiation in a three-level medium,
it was pointed out by Belenov and Poluetztov that a radi-
ation pulse with the Lorentzian-shape intensity could
propagate undistorted in the presence of two-photon res-
onances [9]. Hanamura attempted to modify their theory
and arrived at the conclusion that, in the same situation,
only the semistable Lorentzian pulse is possible [10].
Only recently have Kaplan, Shkolnikov, and Akanaev
suggested conditions for experimental excitation of
Lorentzian envelope solitons [11] that arise in stimulated
Raman scattering [12]. In this paper we show analytical-
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ly that in the presence of the second- and the third-order
nonlinearities a single far-infrared pulse weakly interact-
ing with transverse-optic (TO) phonons in a crystal medi-
um offers an algebraic solitary wave. Both bright and
dark polaritons are presented. In the latter we find that
there exist two radically different types: one is nontopo-
logical (without phase shift along a transverse axis), the
other is topological. The total phase shift of the topologi-
cal solitary wave versus the confinement axis exceeds .
Analytical expressions for the cross-sectional shape of a
variety of solitary-wave polariton pulses are presented.

We consider a situation where an intense electromag-
netic field is coupled to TO phonons of a crystal medium
[13]. The two lowest-order (i.e., ¥'*’ and x¥'*’) nonlineari-
ties are assumed to give the nontrivial contribution to
perturbing the electric displacement. When the center
frequency w is much less than the resonant frequency of
the TO phonon (wgg) and the damping rate of the ac
dielectric constant is negligible (I’ <<w <<wyg), the
time-domain expression of the total electric displacement
can be written in the form

D (1)=¢(0)E —(A/w%0)E, +XPE*+xE? 1)

where €(0) is the dc dielectric constant (the argument of €
indicates the frequency o of radiation), A=g(0)—¢e( ),
(o0 ) is the optical dielectric constant, and y'? and r®
are the coefficients of the quadratic and the cubic non-
linearities, respectively. (We assume in this paper that
the magnitude of the coefficients is independent of w.)
Here we would like to stress that the addition of the cu-
bic nonlinearity in our theoretical model will be reason-
able because in many real materials, close correlation was
predicted between |y'?'| and |x®’| [14]. In other words, a
crystal medium that exhibits an enhanced second-order
nonlinearity tends to accompany a relatively large third-
order nonlinearity. On substitution of Eq. (1) into the
driving term in the (1+ 1)-dimensional scalar wave equa-
tion that can be derived from Maxwell equations, the
nonlinear wave equation is derivable:

E,=cq  [e(0)E —(A/0}o)E, +XPE +xPE?], ,
)

where ¢ is the speed of light in vacuum, and any trans-
verse effects that will be responsible for additional
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diffraction terms E,, and E,, on the left-hand side of Eq.
(2) have been ignored. With the following replacement
(scaling)

E—6e(0) ¥ E , (3a)
t—[A/e(0)] %05t , (3b)
z—coAY[e(0)oro] 1z, (3c)

Eq. (2) can be reduced to
E,,=E,—E,,+6(E*,—0(E%), , )
with
6=—36x"e(0)/(x?) . (5)

In an effort to obtain a traveling-wave solution in a frame
of reference that moves with the traveling velocity of the
electromagnetic pulse, we perform the coordinate trans-
formation as

t—t—yz, z—z, (6)

where ¥ is a real parameter that represents the reciprocal
signal velocity. With this transformation from the global
to the local coordinate, Eq. (4) is modified in the form

E,—2yE,+E,,+(y*—1)E,,—6(E?),,+6(E*), =0 .
(7

This equation is a family of the Boussinesq equations
[15], for which nonalgebraic solitary-wave solutions that
include kink solitons were presented and discussed in
various contexts [3,13,15-17]. In what follows we con-
centrate on eigensolutions along the propagation (the z)
axis. Imposing the stationary requirement d/0z=0 on
Eq. (7) leads to

Etttt—AEtt—G(Ez)tt+9(E3)tt=o ’ (@)

where A=1—y2
As a nonsingular algebraic solitary-wave ansatz of Eq.
(8) we shall set

E(t)=E,(at?P+1)"9+E, . 9)

Here because E is not an envelope field but is the real
electric field, E,, E,, a, p, and g must be real, which will
be related to the constants in Eq. (8); to avoid singulari-
ties we assume that a, p, and g are positive. Note that
E(0)=E,=E,+E, and E(f£x)=E,. On substitution
of Eq. (9) into Eq. (8) we have obtained solely for p=2
and g=1 a set of consistent relations

12aE; 'E,(1+2E; 'E,))=—A , (10a)
—6aE; '(1+4E,; 'E,)=—6, (10b)
8aE, *=0. (10c)

Through direct substitution of Eq. (9) into Eq. (8), we
have ensured that for any other combinations of p and ¢,
Eq. (9) cannot be a solution of Eq. (8). With Egs. (10) for
(p,q)=(2,1) one can readily solve for the three un-
knowns:

a=06E}/8 , (11a)
E,=(30)"1[6+(36+30A)17%] . (11c)

It can be concluded from Eq. (11a) that 6 must be posi-
tive, which results, from Eq. (5), in x® <0. Since E,
must be real, it is necessary from Eq. (11c) that

lyl<(1+12/6)'7% . (12)
From Egs. (11b) and (11c¢) the center amplitude becomes
Ey=—0"1—2+(36+30A)%] . (13)

It should be noted from Egs. (11) and (13) that there are
two combinations for the shape parameters. Below we
discuss each case separately.

Case 1. Choose the upper sign of Egs. (11¢) and (13).
From these equations we find immediately that E, >0
and E, <E,. Asis found from Eq. (13) the sign of E de-
pends on the velocity as

Ey20 for [1+32/(30))12<|y|<(1+12/6)'/%,

(14a)
E,<0 for |y|<[1+32/(36)]'/%. (14b)
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FIG. 1. Schematic illustrations of electric field E (z) of alge-
braic solitary-wave polaritons. (a) Case I [upper sign of Eqgs.
(11c) and (13); E,<E,, E, >0], and (b) case II [lower sign of
Egs. (11¢) and (13); E, <E,, E;>0). t;=—8E,/(6EZE,). The
existence of the crossing points ¢ ==t is responsible for form-
ing foldings in the corresponding intensity profile. The plus and
minus signs in the field profiles indicate a topological profile
symbolically. In case I, irrespective of the velocity, the solitary
wave remains dark; the total phase shift versus the transverse
axis is dependent on the velocity. In contrast to this, in case II
the wave is dark for the fast pulse (|y| < 1), whereas it becomes
bright for the slow pulse (|y|>1).
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Case 1I. Choose the lower sign of Egs. (11c) and (13).
From these equations we find that E;>0 and E, <E,.
From Eq. (11c¢) the sign of E, depends on the velocity as

E,>0 for 1<|y|<(1+12/6)"%, (15a)

E, <0 for |y|<1. (15b)

Note here that the condition of Eq. (15b) is superlumi-
nous.

For both cases, schematic illustrations of the electric-
field profile E (¢) are shown in Fig. 1, wherein one can see
some unique features of the present solitary-wave pulse.
First it is quite interesting to note from Fig. 1(b) that in
case II there exist both bright- and dark-type solitary-
wave polaritons. We notice in the topological solutions
of Figs. 1(a) and 1(b) that there are twin intensity holes (a
black hole doublet) at the two folding points,
Itfl =—8E,/(OE}E,), and the topology changes abrupt-
ly from a minus (—) to a plus (+) and vice versa [18].
This behavior is of great interest because the total phase
shift versus the transverse (the ¢) axis exceeds 7. Accord-
ing to the terminology of Krolikowski, Akhmediev, and
Luther-Davies [2], such a topological solitary wave with
an excessive phase shift can be classified into darker-
than-black solitary waves.

Finally we shall discuss the stability of the polaritons.
To examine a criterion for stability we define a mass in-
tegral

N=[" (E(—E,Pdt=(2/0)7IE,|, (6

where Egs. (9) and (11a) have been used. From Egs.
(11b), (11c), and the relation E, =E;,—E,, we express A
in Eq. (8) with N:

A=(360)"Y[(3/7)(6/2)**N]*—36} . 17)

According to the Vakhitov-Kolokolov criterion (N
theorem) [19] the necessary condition for stability of a
solitary-wave solution is given by dN/dA>0. We find
from Eq. (17) that dN /d A >0 because 0> 0. This result
suggests that the algebraic solitary-wave polaritons are
stable against propagation.

In conclusion, we have predicted that in the simultane-
ous presence of the second- and the third-order non-
linearities a far-infrared pulse interacting weakly with TO
phonons in a dispersive dielectric could propagate as an
algebraic solitary wave. The solitary wave has been
found to possess unique properties, such as formation of
noninteracting twin holes in the transverse intensity
profile and realization of an excessive phase shift.
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